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Abstract We study the minimization problem of the sum of two func-
tions in which one of them is nonconvex and nonsmooth and the other is
differentiable with a Lipschitz continuous gradient (and possibly noncon-
vex too). By assuming that the nonconvex nonsmooth function is strongly
quasiconvex in the sense of Polyak, we first provide interesting necessa-
ry optimality conditions and then we implement the proximal gradient
algorithm. As a consequence, new and useful information regarding the
point obtained by the stopping criteria as well as for the limit point of the
generated sequence under the standard Polyak-Kurdyka- Lojasiewicz pro-
perty is provided. Moreover, we apply these results to different problems
from nonconvex optimization as the minimization of the sum of nonconvex
functions including difference of convex programming and quadratic frac-
tional programming problems. Finally, examples of strongly quasiconvex
functions which satisfy the Polyak-Kurdyka- Lojasiewicz property as well
as numerical illustrations are presented.

Keywords: Nonconvex optimization; Nonsmooth optimization; Proximal
gradient algorithms; Forward-backward algorithms; DC programming;
Quadratic fractional programming

1 Introduction
sec:1

Let h, f : Rn → R ∪ {+∞} be two extended real-valued functions. We are
interested in the following mathematical problem

min
x∈Rn

F (x) := h(x) + f(x). (1.1) min:sum

Its solution set is denoted by argminRn(h+ f).
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Problem (1.1) encompasses different problems studied in the continuous opti-
mization community as the convex minimization problems, difference of convex
(DC) minimization problems and many other classes of mathematical program-
ming problems as well as their applications in signal and image recovery, data
sciences and biochemistry among others (see [1, 2, 7, 11] and references therein).

In order to obtain optimality conditions and design algorithms for solving
problem (1.1), we can take advantage of the composite form of function F and
the properties of the functions f and h in different situations such as: convexity,
differentiability and/or global and locally Lipschitz continuity properties for the
gradient among others (see for example [3, 4, 7, 11, 20, 24]).

Optimality conditions for problem (1.1) have been deeply developed for the
case when h and f are convex and f is differentiable since, in this case, the fo-
llowing outstanding necessary and sufficient condition for optimality holds (see,
for instance, [6, Theorem 10.7]):

x is a global minimizer of h+ f ⇐⇒ 0 ∈ ∂h(x) +∇f(x), (1.2) convex:case

where ∂ denotes the usual convex subdifferential (see relation (2.12) below).
Relation (1.2) is extremely useful for studying problem (1.1) in the convex

case and, also, for providing numerical methods in order to find a solution as,
for instance, when we use the proximal gradient method (see [6, Chapter 10]).

In the case when f and h are nonconvex, relation (1.2) is no longer useful, but
another outstanding subdifferential could be used, the limiting subdifferential,
which has many interesting properties (see [32] for a great account) as following
optimality condition for local minimizers [32]:

x is a local minimizer of h+ f =⇒ 0 ∈ ∂limh(x) +∇f(x), (1.3) nece:limsubd

where ∂lim is the limiting subdifferential (see relation (2.13) below).
Many forward-backward algorithms for solving (1.1) were built based on this

optimality condition under different assumptions on h and f . Among them, the
proximal gradient method and its accelerated versions were deeply studied in
[3, 4, 10, 11, 20, 24, 29, 31] under the assumption that f has global or locally
Lipschitz continuous gradient and h is lsc.

When the function h is not convex, but enjoys a generalized convexity pro-
perty such as: quasiconvexity or strong quasiconvexity, the optimality condition
(1.2) for the convex case can not be applied while condition (1.3) still holds
true, but even for global minimizers, relation (1.3) could be useless at all since
the limiting subdifferential for strongly quasiconvex functions is not a good
approximation in general. Indeed, let us consider the function h(x) =

√
‖x‖.

Here the minimum point is 0, but the limiting subdifferential ∂limh(0) = Rn
is the whole space, a completely useless information. On the other hand, the
strong subdifferential [23] for h(x) =

√
‖x‖ at 0 is a compact convex set (see

Remark 3.4 below) and includes 0. For these reasons, we consider natural to
use this generalized subdifferentials for obtaining new optimality conditions for
problem (1.1), and then to use those optimality conditions for studying the
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convergence of forward-backward algorithms as the proximal gradient method.
This is exactly what we show in this paper.

Our contribution: We deal with problem (1.1) by assuming that the non-
convex nonsmooth function h is strongly quasiconvex in the sense of Polyak
[35], while f is assumed to be differentiable with Lipschitz continuous gradient.
Hence, in virtue of [26], we can apply the proximal operator to h, and for the
differentiable function f we use the gradient step. Furthermore, by using the
strong subdifferential [23], we provide necessary optimality conditions for pro-
blem (1.1) and, as a consequence, we provide new information on the limit point
of the sequence generated by the proximal gradient algorithm under the usual
Polyak-Kurdyka- Lojasiewicz (PKL) property. We apply these results in non-
convex optimization problem as in the minimization of the sum of nonconvex
functions including DC programming problems and quadratic fractional pro-
gramming problems. Furthermore, as we will show in Remark 3.1 (below), our
assumptions on the functions h and f are not restrictive since we can always
encompass the usual cases of minimizing the sum of two convex functions and
the DC programming problem in our context and, moreover, several nonconvex
nonsmooth problems fits our assumptions while previous known results can not
be applied.

The structure of the paper is as follows: In Section 2 we present preliminaries
and basic definitions regarding generalized convexity, nonsmooth analysis and
first-order algorithms. In Section 3, we present both new necessary optimality
conditions and a proximal gradient algorithm for problem (1.1). Furthermore,
we ensure the convergence of the sequence generated by the proximal gradi-
ent algorithm under standard assumptions while new information regarding its
limit point is provided. In Section 4, we apply our theoretical results in the
minimization of the sum of nonconvex functions which includes DC program-
ming and quadratic fractional programming problems and we present numerical
illustrations of the proposed algorithm.

2 Preliminaries and Basic Definitions
sec:2

The inner product of Rn and the Euclidean norm are denoted by 〈·, ·〉 and ‖·‖,
respectively. Let K be a nonempty set in Rn, its closure is denoted by clK,
its boundary by bdK, its topological interior by intK and its convex hull by
convK. Given a convex and closed set K, the projection of x on K is denoted
by PK(x), and the indicator function on K by ιK . The open ball with center
at x and radius δ > 0 is denoted by B(x, δ).

Given a closed and convex set K ⊆ Rn, the normal cone of K at x ∈ K is
defined by

NK(x) := {w ∈ Rn : 〈w, x− z〉 ≥ 0, ∀ z ∈ K}. (2.1) eq:NorCon

Given any extended-valued function h : Rn → R := R∪ {±∞}, the effective
domain of h is defined by domh := {x ∈ Rn : h(x) < +∞}. It is said that h
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is proper if domh is nonempty and h(x) > −∞ for all x ∈ Rn. The notion of
properness is important when dealing with minimization problems.

It is indicated by epih := {(x, t) ∈ Rn × R : h(x) ≤ t} the epigraph of h,
by Sλ(h) := {x ∈ Rn : h(x) ≤ λ} the sublevel set of h at the height λ ∈ R
and by argminRnh the set of all minimal points of h. A function h is lower
semicontinuous (lsc henceforth) at x0 ∈ Rn if for any sequence {xk}k ∈ Rn with
xk → x0, h(x0) ≤ lim infk→+∞ h(xk). Furthermore, the current conventions
sup∅ h := −∞ and inf∅ h := +∞ are adopted.

A function h with convex domain is said to be

(a) convex if, given any x, y ∈ domh, then

h(λx+ (1− λ)y) ≤ λh(x) + (1− λ)h(y), ∀ λ ∈ [0, 1], (2.2) def:convex

(b) strongly convex on domh with modulus γh ∈ ]0,+∞[ if for all x, y ∈ domh
and all λ ∈ [0, 1], we have

h(λy + (1− λ)x) ≤ λh(y) + (1− λ)h(x)− λ(1− λ)
γh
2
‖x− y‖2, (2.3) strong:convex

(c) quasiconvex if, given any x, y ∈ domh, then

h(λx+ (1− λ)y) ≤ max{h(x), h(y)}, ∀ λ ∈ [0, 1], (2.4) def:qcx

(d) strongly quasiconvex on domh with modulus γh ∈ ]0,+∞[ if for all x, y ∈
domh and all λ ∈ [0, 1], we have

h(λy + (1− λ)x) ≤ max{h(y), h(x)} − λ(1− λ)
γh
2
‖x− y‖2. (2.5) strong:quasiconvex

It is said that h is strictly convex (resp. strictly quasiconvex) if the inequa-
lity in (2.2) (resp. (2.4)) is strict whenever x 6= y and λ ∈ ]0, 1[. Further-
more, note that convex (resp. quasiconvex) functions could be seen as
strongly convex (resp. strongly quasiconvex) functions when γh = 0.

The relationship between all these notions is summarizing below (we denote
quasiconvex by qcx):

strongly convex =⇒ strictly convex =⇒ convex
⇓ ⇓ ⇓

strongly qcx =⇒ strictly qcx =⇒ qcx
(SC) scheme

All the reverse statements do not hold in general. For instance, the Euclidean
norm h1(x) = ‖x‖ is strongly quasiconvex without being strongly convex on
any bounded convex set (see [22, Theorem 2]) and the function h2(x) = x

1+|x|
is strictly quasiconvex without being strongly quasiconvex on R while the other
counter examples are well-known (see [12, 16]).

Before continuing, let us show some new examples of strongly quasiconvex
functions which are not convex.
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rem:exam Remark 2.1. (i) Let h : Rn → R be given by h(x) =
√
‖x‖. Clearly, h

is nonconvex, but it is strongly quasiconvex on any B(0, r), r > 0, with
modulus γ = 1

5
1
4 2

5
4 r

1
2

by [26, Theorem 17].

(ii) Let A,B ∈ Rn×n, a, b ∈ Rn, α, β ∈ R, and h : Rn → R be the function
given by:

h(x) =
f(x)

g(x)
=

1
2 〈Ax, x〉+ 〈a, x〉+ α
1
2 〈Bx, x〉+ 〈b, x〉+ β

. (2.6)

Take 0 < m < M and define:

K := {x ∈ Rn : m ≤ g(x) ≤M}.

If A is a positive definite matrix and at least one of the following conditions
holds:

(a) B = 0 (the null matrix),

(b) f is nonnegative on K and B is negative semidefinite,

(c) f is nonpositive on K and B is positive semidefinite,

then h is strongly quasiconvex on K with modulus γ = λmin(A)
M by [19,

Proposition 4.1], where λmin(A) is the minimum eigenvalue of A.

(iii) Let h1, h2 : Rn → R be two strongly quasiconvex functions with modulus
γ1, γ2 > 0, respectively. Then h := max{h1, h2} is strongly quasiconvex
with modulus γ := min{γ1, γ2} > 0 (straightforward).

(iv) Let α > 0 and h : Rn → R be a strongly quasiconvex function with modulus
γ > 0. Then αh is strongly quasiconvex with modulus γα > 0 (straight-
forward).

A proper function h : Rn → R is said to be:

(i) 2-supercoercive, if

lim inf
‖x‖→+∞

h(x)

‖x‖2
> 0,

(ii) coercive, if
lim

‖x‖→+∞
h(x) = +∞,

or equivalently, if Sλ(h) is bounded for all λ ∈ R.

(iii) 2-weakly coercive, if

lim inf
‖x‖→+∞

h(x)

‖x‖2
≥ 0. (2.7) 2:weakly

Clearly, (i) ⇒ (ii) ⇒ (iii), but the reverse statements do not hold as the
functions h(x) =

√
x and h(x) = x shows, respectively.

The following existence result is the starting point of our research.
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Lemma 2.1. ([26, Theorem 1]) Let K be a convex set in Rn and h : Rn → Rstrongqcx:coercive
be a strongly quasiconvex function with modulus γh > 0 on K. Then h is 2-
supercoercive (in particular, coercive).

As a consequence, every lsc strongly quasiconvex function has an unique
minimizer on a closed and convex set K which satisfies that ([23])

h(x) +
γh
8
‖y − x‖2 ≤ h(y), ∀ y ∈ K. (2.8) eq:strongmin

If a point x ∈ K satisfies relation (2.8), then x is said to be a γh
8 -strong

minimum point of h on K.
A function h : Rn → R its said to be L-smooth on K ⊆ Rn if it is differen-

tiable on K and

‖∇h(x)−∇h(y)‖ ≤ L‖x− y‖, ∀ x, y ∈ K. (2.9) L:smooth

For L-smooth functions, a fundamental result is the descent lemma, that is,
if h is a L-smooth function on a convex set K with value L ≥ 0, then for every
x, y ∈ K, we have

h(y) ≤ h(x) + 〈∇h(x), y − x〉+
L

2
‖x− y‖2. (2.10) descent:lemma

Let K ⊆ Rn be a convex set and h : K → R be a differentiable function.
Then h is strongly convex on K with modulus γh if and only if

h(x) ≥ h(y) + 〈∇h(y), x− y〉+
γh
2
‖y − x‖2, ∀ x, y ∈ K. (2.11) sconvex:diff

Given a proper function h : Rn → R, the convex subdifferential of h at
x ∈ domh is defined by

∂h(x) := {ξ ∈ Rn : h(y) ≥ h(x) + 〈ξ, y − x〉, ∀ y ∈ Rn}, (2.12) convex:subd

and by ∂h(x) = ∅ if x 6∈ domh.

For each x ∈ domh, the Fréchet subdifferential of h at x, denoted by ∂̂h(x),
is the set defined by:

∂̂h(x) := {ξ ∈ Rn : lim inf
y 6=x
y→x

1

‖y − x‖
(h(y)− h(x)− 〈ξ, y − x〉) ≥ 0},

while ∂̂h(x) := ∅ when x 6∈ domh.
The limiting (or Mordukhovich) subdifferential (see [32]) of h at x ∈ domh

is defined by:

∂limh(x) = {ξ ∈ Rn : ∃xk → x, h(xk)→ h(x), ξk ∈ ∂̂h(xk)→ ξ}. (2.13) lim:subd
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We also recall that given a nonempty set K ⊆ Rn, β > 0 and γ ≥ 0. The
(β, γ,K)-strong subdifferential (strong subdifferential) of h at x ∈ domh∩K is
defined by (see [23])

∂Kβ,γh(x) := {ξ ∈ Rn : max{h(y), h(x)} ≥ h(x) +
λ

β
〈ξ, y − x〉

+
λ

2

(
γ − λ

β
− λγ

)
‖y − x‖2, ∀ y ∈ K, ∀λ ∈ [0, 1]}. (2.14) def:subd

When K := Rn, we write = ∂R
n

β,γh.
In the particular case where K = Sh(x)(h), we define the (β, γ)-SS (strong

sublevel) subdifferential of h by (see [23])

∂β,γh(x) := {ξ ∈ Rn : 〈ξ, y − x〉 ≤ − βγ

2
‖y − x‖2, ∀ y ∈ Sh(x)(h)}. (2.15) eq:SS

If γ > 0, then ∂Kβ,γh(x) is motivated for strongly quasiconvex functions, while

if γ = 0, then ∂Kβ,0h(x) is motivated for quasiconvex functions. Note that when
x ∈ domh and Sh(x)(h) ⊆ K,

∂Kβ,γh(x) ⊆ ∂β,γh(x), ∀ β > 0, ∀ γ ≥ 0, (2.16) inclusion

and that if h is lsc and quasiconvex, then

∂β,0h(x) = NSh(x)(h)(x).

We also have the following properties (see [23]):

(P1) ∂Kβ,γh(x) and ∂β,γh(x) are closed and convex for all x ∈ domh ∩ K, all
β > 0 and all γ ≥ 0 by [23, Proposition 7(a)].

(P2) ∂Kβ,γh(x) is compact for all x ∈ int (domh ∩K) by [23, Proposition 7(d)].

(P3) If ξ ∈ ∂β,γh(x), then λξ ∈ ∂β,γh(x) for all λ ≥ 1, i.e., ∂β,γh(x) is un-
bounded for all x ∈ domh (straightforward).

(P4) If h is strongly quasiconvex with modulus γ > 0 and lsc, then ∂β,γh(x) 6= ∅
for all x ∈ int domh by [23, Corollary 38(a)].

(P5) If h is strongly quasiconvex with modulus γ > 0 and lsc, then ∂Kβ,γh(x) 6= ∅
for all x ∈ domh ∩K by [23, Corollary 38(a)].

(P6) If h is strongly quasiconvex with modulus γ = 0 (i.e., h is quasiconvex) and
satisfies (2.7), then ∂Kβ,γh(x) 6= ∅ for all x ∈ domh ∩K by [23, Corollary
38(b)].

Optimality conditions for characterizing optimal solutions to the problem of
minimizing a strongly quasiconvex functions in terms of both subdifferentials,
that are employed in subgradient projection methods for solving such optimiza-
tion problems can be found in [23] and [13, 28], respectively. Furthermore,
the following result provides a straightforward method to estimate the strong
subdifferential in terms of the convex subdifferential for quadratic fractional
functions. This result will be useful for numerical experiments in Section 4.
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Lemma 2.2. ([28, Proposition 4.2]) Suppose that h(x) = f(x)
g(x) for all x ∈ domh,

prop:frac2
where f is strongly convex with modulus γ > 0, g is affine, positive, finite, and
bounded from above by µ > 0 on domh, and domh is convex. Then for any
ρ > 0 and x0 ∈ domh, we have

ρ

µ
∂(f − αg)(x0) ⊆ ∂domh

ρ, γµ
h(x0),

with α := h(x0).

char:min Remark 2.2. The convex, strong and strong sublevel subdifferentials charac-
terize different notions of minimum point for any proper function, that is;

0 ∈ ∂h(x) ⇐⇒ h(y) ≥ h(x), ∀ x ∈ Rn. (2.17) global:min

0 ∈ ∂β,γh(x) ⇐⇒ h(y) > h(x), ∀ y ∈ K\{x}. (2.18) strict:min

0 ∈ ∂Kβ,γh(x) ⇐⇒ h(y) ≥ h(x) +
γ2β

8(1 + γβ)
‖y − x‖2, ∀ y ∈ K, (2.19) strong:min

where (2.17) is well-known and relations (2.18) and (2.19) where proved in [23,
Theorem 24].

Furthermore, we say that a point x ∈ K is a ε-quasi solution of h on K
(with ε > 0) if

h(x) ≤ h(y) + ε‖y − x‖2, ∀ y ∈ K. (2.20) eps:sol

Let K be a closed and convex set in Rn and h : Rn → R be a proper function.
Then the proximity operator on K of parameter β > 0 of h at x ∈ Rn is defined
as Proxβh : Rn ⇒ Rn where

Proxβh(K,x) = argminy∈K

{
h(y) +

1

2β
‖y − x‖2

}
. (2.21) gammah-def

If K = Rn, then we set Proxβh(Rn, x) = Proxβh(x). If h is proper, lsc and con-
vex, then Proxβ,h becomes a single-valued operator (see [5, Proposition 12.15]).

For strongly quasiconvex and quasiconvex functions we have the following
relationship between the proximity operator and the strong subdifferential.

Lemma 2.3. ([23, Propositions 36 and 40]) Let K be a closed and convex setpro:K
in Rn, h : Rn → R be a proper and lsc function such that K ⊆ domh, β > 0
and z ∈ K. If h is strongly quasiconvex on K with modulus γ ≥ 0, then

x ∈ Proxβh(K, z) =⇒ z − x ∈ ∂Kβ,γh(x). (2.22)

Let h : Rm → R ∪ {+∞} be a proper and lsc function. For x ∈ dom g, we
denote the limiting (Mordukhovich) subdifferential of h at x by ∂limh(x).

Now, let us recall the following definition regarding the Polyak-Kurdyka-
 Lojasiewicz (PKL) property (see [25, 30, 34] and also [8]).
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Definition 2.1. (see, for instance, [3]) Let h : Rm → R∪{+∞} be a proper anddef:KL
lsc function. We say that h satisfies the Polyak-Kurdyka- Lojasiewicz (PKL)
property at x ∈ dom ∂limh := {x ∈ Rm : ∂limh(x) 6= ∅} if there exists η ∈
]0,+∞], a neighborhood U of x and a concave function φ : [0, η[→ [0,+∞[
satisfied

(K1) φ(0) = 0;

(K2) φ is continuously differentiable on ]0, η[, continuous at 0;

(K3) φ′(s) > 0 for all s ∈ (0, η),

such that for all x ∈ U ∩ {x ∈ Rm : h(x) < h(x) < h(x) + η}, we have

φ′(h(x)− h(x)) dist(0, ∂limh(x)) ≥ 1. (2.23) KLpro

Finally, we recall a convergence result which will play a determined role in
what follows. This is a classical result in the context of Fejér monotonicity
techniques for proving convergence results of classical algorithms for convex
optimization problems and/or for monotone inclusion problems (see [5]).

lemma:seq1 Lemma 2.4. Let {an}n and {bn}n be two real sequences such that bn ≥ 0 for
all n ∈ N, {an}n is bounded from below and an+1 + bn ≤ an for all n ∈ N. Then
{an}n is monotonically decreasing and convergent and

∑
n∈N bn < +∞.

For a further study on generalized convexity, nonsmooth analysis and pro-
ximal point type algorithms we refer to [3, 5, 6, 7, 10, 11, 12, 16, 17, 18, 23, 26,
29, 33, 35] and references therein.

3 Minimization of the Sum of Nonconvex Func-
tions

sec:3

In this section, we propose to study optimality conditions for problem (1.1)
where f is a real-valued function and h is a proper, extended real-valued func-
tion. To that end, let us consider the following assumptions on h and f :

(A1) h is proper, lsc and strongly quasiconvex with modulus γh ≥ 0 on its
domain.

(A2) f is real-valued, differentiable with L-Lipschitz continuous gradient (with
L > 0).

(A3) f is 2-weakly coercive.

(A4) f is convex.

The first important comment to understand the reason behind the assumption
(A1) is given in the scheme (SC), since every strongly convex function is strongly
quasi-convex. As a consequence, the problem of minimizing the difference of
convex (DC) functions can also be transformed to our assumptions (A1) and
(A2), as we can see below.
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part:cases Remark 3.1. (Difference of convex functions). Let us consider the following
DC optimization problem:

min
x∈Rn

hc(x)− fc(x) (3.1) dc:problem

where hc, fc : Rn → R are convex functions and fc is differentiable with Lc-
Lipschitz continuous gradient. Then problem (3.1) can be transformed into an
equivalent problem involving strongly convex functions:

min
x∈Rn

h1(x)− f1(x), (3.2) sdc:problem

where h1(x) = hc(x) + ρ
2‖x‖

2 and f1(x) = fc(x) + ρ
2‖x‖

2 are strongly convex
functions with modulus ρ > 0. Hence h1 is strongly quasiconvex with modu-
lus ρ > 0 and satisfies (A1), while −f1 satisfies (A2) with (Lc + ρ)-Lipschitz
gradient.

We will come back to this problem in the applications of Section 4.

3.1 Necessary Optimality Conditions
subsec:3-1

We begin this subsection by ensuring the existence of solutions for problem
(1.1) under assumptions (A1) and (A3) (note that (A4) implies (A3) since every
convex function has an affine minorant).

exist:solutions Proposition 3.1. Let h and f be such that f is differentiable and assumptions
(Ai) with i = 1, 3 hold . Then argminRn(h+ f) 6= ∅ and compact.

Proof. Since h is strongly quasiconvex, it is 2-supercoercive by Lemma 2.1, and
since f is 2-weakly coercive, its sum is supercoercive too because

lim inf
‖x‖→+∞

h(x) + f(x)

‖x‖2
≥ lim inf
‖x‖→+∞

h(x)

‖x‖2
+ lim inf
‖x‖→+∞

f(x)

‖x‖2
> 0.

Since h+ f is lsc, argminRn(h+ f) 6= ∅ and compact.

not:finite Remark 3.2. The number of solutions of problem (1.1) is not necessarily fi-
nite even under assumptions (Ai), with i = 1, 2, 4. Indeed, let us consider the
functions h, f : R→ R given by

h(x) = max{x, x2}, f(x) = 1− x.

Here h is strongly quasiconvex with modulus γh = 1
2 by Remark 2.1(iii), while

f is differentiable and convex. However, minx∈R(h(x) + f(x)) = [0, 1].

Our first main result, which provides necessary conditions for problem (1.1)
under the assumption (A1), is given below.

nece:cond Theorem 3.1. Suppose that h satisfies assumption (A1), f is differentiable on
Rn and x ∈ argminRn(h+ f). Then

0 ∈ ∂1,γhh(x) +∇f(x). (3.3) nece:1

10



If in addition f satisfies (A2), then

0 ∈ ∂R
n

1
L ,γh

h(x) +
1

L
∇f(x). (3.4) nece:2

Proof. Let x ∈ argminRn(h+ f). Then, for every y ∈ K and every λ ∈ [0, 1], it
follows from (A1) that

h(x) + f(x) ≤ h(λy + (1− λ)x) + f(λy + (1− λ)x)

≤ max{h(y), h(x)} − λ(1− λ)
γh
2
‖y − x‖2 + f(λy + (1− λ)x). (3.5) for:nec

If h(y) ≤ h(x), then

(1− λ)
γh
2
‖y − x‖2 ≤ f(λy + (1− λ)x)− f(x)

λ
λ↓0
=⇒ γh

2
‖y − x‖2 ≤ 〈∇f(x), y − x〉.

Therefore, 0 ∈ ∂1,γh(x) +∇f(x) and relation (3.3) holds.
For (3.4): Assume that f satisfies in addition (A2). Then, if h(x) < h(y) in

(3.5), we have

h(x) + f(x) ≤ h(y)− λ(1− λ)
γh
2
‖y − x‖2 + f(λy + (1− λ)x)

≤ h(y)− λ(1− λ)
γh
2
‖y − x‖2 + f(x) + λ〈∇f(x), y − x〉+

λ2L

2
‖y − x‖2.

(3.6) res:02

We separate the proof in two cases. Let us consider L = 1 in (3.6). Then,

h(y) ≥ h(x) + λ〈−∇f(x), y − x〉+ λ(1− λ)
γh
2
‖y − x‖2 − λ2

2
‖y − x‖2

≥ h(x) + λ〈−∇f(x), y − x〉+
λ

2
(γh − λγh − λ)‖y − x‖2, ∀λ ∈ [0, 1].

Hence, −∇f(x) ∈ ∂D1,γhh(x) withD := (Sh(x)(h))c (the complement of Sh(x)(h)).

Then, it follows from this and (3.3) that −∇f(x) ∈ ∂Rn1,γh
h(x).

Finally, suppose that L 6= 1. Let h′ = 1
Lh and f ′ = 1

Lf . Then, x ∈
argminRn(h + f) if and only if x ∈ argminRn(h′ + f ′). In addition, h′ satisfies
the assumption (A1) with the modulus γ′h = 1

Lγh and f ′ satisfies the assumption
(A2) with the Lipschitz constant L′ = 1. Hence, it follows from the previous
case that

0 ∈ ∂n1,γ′
h
h′(x) +∇f ′(x) ⇐⇒ 0 ∈ ∂R

n

1
L ,γh

h(x) +
1

L
∇f(x),

which completes the proof.

The previous necessary condition is not sufficient for global minimum even
under assumptions (Ai) with i = 1, 2, 4.
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s:inclu Remark 3.3. Let h, f : R→ R be the functions given by

h(x) = max{
√
|x|, x2}, f(x) = −3

2
x.

Then h is strongly quasiconvex with modulus γh = 1
2 > 0 by Remark 2.1. Since

argminR (h + f) = {1} and argminlocR (h + f) = {0, 1}, we take x = 0. Then,
by [23, Remark 20] we have

∂R1, 12
h(0) =

[
−3

2
,

3

2

]
,

i.e., −∇f(0) = 3
2 ∈ ∂

R
1, 12
h(0), but 0 6∈ argminR (h+ f).

Under the assumptions in Theorem 3.1, we have the following necessary
conditions for local minimizers.

nece:locmin Corollary 3.1. Under the assumptions in Theorem 3.1: If x is a local mini-
mizer of h+ f , then there exist ε > 0 such that

0 ∈ ∂B(x,ε)∩Sh(x)(h)
1,γh

(x) +∇f(x).

In addition, if f satisfies (A2), then

0 ∈ ∂B(x,ε)
1
L ,γh

(x) +
1

L
∇f(x).

Proof. Just note that if x is a local minimizer of h + f , then there exist ε > 0
such that

h(x) + f(x) ≤ h(y) + f(y), ∀ y ∈ B(x, ε),

and the proof follows exactly as in Theorem 3.1.

If the necessary condition holds, then we have the following result whenever
f satisfies (A4), i.e., f is convex.

suf:e-sol Proposition 3.2. Let h be a proper function, f be a differentiable function
such that (A4) holds and x ∈ dom(h+ f). If there exists β > 0 such that

0 ∈ ∂R
n

β,γh
h(x) + β∇f(x), (3.7) nes_beta

then the following assertions hold:

(a) f(x) + γh
2 ‖y − x‖

2 ≤ f(y) for all y ∈ Sh(x)(h).

(b) h(x) + f(x) ≤ h(y) + f(y) + 1
2β ‖y − x‖

2 for all y 6∈ Sh(x)(h).

Proof. If −β∇f(x) ∈ ∂Rnβ,γhh(x), then for all y ∈ Rn and all λ ∈ [0, 1], we have

max{h(y), h(x)} ≥ h(x) +
λ

β
〈−β∇f(x), y − x〉+

λ

2

(
γh −

λ

β
− λγh

)
‖y − x‖2

≥ h(x) + λ(f(x)− f(y)) +
λ

2

(
γh −

λ

β
− λγh

)
‖y − x‖2, (3.8) for:suf

12



where the last inequality follows from (A4). Then we have two cases:
(i): If h(y) ≤ h(x), then the result follows by taking λ = 0 in (3.8).
(ii): If h(y) > h(x), then the result follows by taking λ = 1 in (3.8).

We finish this section with a simple case where condition (3.7) becomes a
sufficient optimality condition.

Corollary 3.2. Let h and f be such that assumptions (Ai) with i = 1, 2, 4 hold.
If argminRn h ⊆ argminRn f , then

argminRn(h+ f) = {x∗} = argminRn h. (3.9)

If in addition there exists x ∈ dom(h + f) which satisfies condition (3.7) for
some β > 0, then x = x∗.cor1

Proof. Since h is lsc and strongly quasiconvex, argminRnh is a singleton. Let
x∗ = argminRn h ⊆ argminRn f and suppose for the contrary that there exists
x̂ ∈ argminRn(h+f) with x̂ 6= x∗. Then, (h+f)(x̂) ≤ (h+f)(x) for all x ∈ Rn.
Thus,

(h+ f)(x̂) ≤ (h+ f)(x∗) ⇐⇒ h(x̂)− h(x∗) ≤ f(x∗)− f(x̂) ≤ 0,

Hence, h(x̂) ≤ h(x∗), a contradiction. Therefore, x̂ = x∗.
Now, let us assume that there exists x ∈ Rn satisfies the condition (3.7)

for some β > 0. Hence, h(x∗) ≤ h(x) and f(x∗) ≤ f(x), which implies that
x∗ ∈ Sh(x)(h) and, by Proposition 3.2, we obtain

f(x) +
γh
2
‖x∗ − x‖2 ≤ f(x∗).

Therefore, x = x∗.

3.2 A Proximal Gradient Algorithm
subsec3-2

In this subsection, we study a proximal gradient algorithm for dealing with
problem (1.1). To that end, we recall and introduce the following notions.

statio:point Definition 3.1. Let h, f : Rn → R ∪ {+∞} be such that f is differentiable,
β > 0 and γ ≥ 0. Then x∗ ∈ domh is said to be:

(a) A l-critical point (see [3]) for problem (1.1) if

0 ∈ ∇f(x∗) + ∂limh(x∗). (3.10) eq:crit

(b) A s-critical point for problem (1.1) corresponding to β if

0 ∈ β∇f(x∗) + ∂R
n

β,γh(x∗). (3.11) eq:statio

In virtue of (2.16), if x∗ satisfies (3.11), then 0 ∈ β∇f(x∗) + ∂β,γh(x∗), too.
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best:info Remark 3.4. (Importance of s-criticality instead of l-criticality) When
dealing with problem (1.1) under assumptions (Ai) with i = 1, 2, 3, ensures that
s-criticality of a point (relation (3.11)) could be much better than l-criticality
(relation (3.10)) since the strong subdifferential provide more useful information
for nonsmooth strongly quasiconvex function than the limiting subdifferential
even for continuous functions in the one-dimensional case as we recall below.
Indeed, let h : R→ R be given by

h(x) =

{ √
|x|, if |x| ≤ 1,

+∞, otherwise.

By Remark 2.1(i), h is strongly quasiconvex with modulus γh = 1
2 > 0. Take

x = 0 and β = 1. Then, by [23, Remark 20] we have

∂R1, 12
h(0) =

[
−3

2
,

3

2

]
,

while ∂limh(0) = R.

Therefore, our goal is to ensure s-criticality of the generated sequence of the
Proximal gradient algorithm in its classical version:

Algorithm 1 Proximal gradient Algorithm for Nonconvex Nonsmooth Mini-
mization (PGANNM)

Prox:gradient

Step 0. Take x1 ∈ dom (h+ f), k = 1 and sequences {βk}k ⊆ R++.

Step 1. Compute

yk = xk − βk∇f(xk). (3.12) step:y

xk+1 ∈ Proxβkh(yk). (3.13) step:x

Step 2. If xk+1 = xk, then STOP, xk is a s-critical point of problem (1.1).
Otherwise, take k = k + 1 and go to Step 1.

Algorithm 1 has been studied deeply in the literature (see, for instance,
[3, 5, 6, 7, 11, 10, 20, 24, 29, 31, 33]). In particular, in [3], a general version of
the proximal gradient algorithm for minimizing the sum of a nonconvex extended
real-valued function h and a L-smooth function f was studied under the (PKL)
property. If the restriction of h on its domain is continuous and the sequence
generated by this algorithm is bounded, then it converges to a l-critical point x
of f + h (see [3, Theorem 5.1]), i.e., the sequence {xk}k converges to a point x
such that

0 ∈ ∂lim(h+ f)(x).

In this subsection, we will study Algorithm 1 when h is strongly quasiconvex
and nonsmooth and f is L-smooth and possible nonconvex too. Thanks to the
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strong quasiconvexity of h and the optimality conditions developed in Subsection
3.1, we will show that the generated sequence {xk}k converges also to a s-
critical point as defined in Definition 3.1(b) which is, at least, a quasi solution
for problem (1.1) (see relation (2.20)).

First of all, let us present here important results of the sequence generated
by the proximal gradient method in our setting. The properties in part (a), (c),
(d) also presented in [3, Theorem 5.1] under the assumptions that h + f is a
(PKL) function and the sequence {xk} is bounded.

rel:k:k+1 Proposition 3.3. Let h and f be such that assumption (Ai) with i = 1, 2 hold
and {βk}k be a sequence of positive numbers. Then for every k ∈ N, we have

(h+ f)(xk+1) +
(1− βkL)

2βk
‖xk+1 − xk‖2 ≤ (h+ f)(xk). (3.14) eq:decrease_1

If in addition (A3) holds and 0 < βk ≤ 1
L for all k ∈ N, then

(a) (f + h)(xk+1) ≤ (f + h)(xk) for all k ∈ N.

(b) The sequence {xk}k is bounded.

(c) The sequence {(f + h)(xk)}k is convergent.

(d) The sequence {xk}k has a finite length, i.e.,

∞∑
k=k0

‖xk+1 − xk‖2 <∞.

Proof. (a): By [3], relation (3.14) holds, and since βk ≤ 1
L for all k ∈ N, we

have
(h+ f)(xk+1) ≤ (h+ f)(xk), ∀ k ∈ N. (3.15)

(b): Since h+ f is coercive by assumptions (A1) and (A3), S(h+f)(x1)(h+ f)

is bounded, thus the sequence {xk}k ⊆ S(h+f)(x1)(h+ f) is bounded too.
(c)-(d): In virtue of (3.14), parts (a) and (b) proved above, it follows from

Lemma 2.4 that the sequence {(f+h)(xk)}k is convergent and that
∑∞
k=k0

‖xk−
xk+1‖2 <∞, which completes the proof.

Basic results are given below. For the first one, note that there is no as-
sumption on h and that a sufficient condition for the existence of iterates xk+1

is that h is lsc and 2-weakly coercive (see [14, Proposition 3.1]).

prop:start-sol Proposition 3.4. Let h and f be such that f is differentiable and β > 0. Then
for any x ∈ Rn and y = x− β∇f(x), the following assertions hold:

(a) If f satisfies (A2) and β ≤ 1
L , then

x ∈ argminRn(h+ f) =⇒ x ∈ Proxβh(y). (3.16)

(b) Suppose in addition that f is strongly convex with modulus γf > 0. If
β ≥ 1

γf
for all k ∈ N, then

x ∈ Proxβh(y) =⇒ x ∈ argminRn(h+ f). (3.17)
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Proof. It is straightforward.

k=k+1 Proposition 3.5. Let h be such that assumption (A1) holds, f be differentiable
and {βk}k be a sequence of positive numbers. Then the following assertions hold:

(a) If xk+1 = xk, then

0 ∈ ∂R
n

βk,γh
h(xk) + βk∇f(xk), (3.18) nece:cond1

(b) If f satisfies (A4) and xk+1 = xk, then

xk ∈ Fix(ProxβkF (·)). (3.19) suffcond1

Proof. (b): It is straightforward. (a): Since xk+1 = xk and xk+1 ∈ Proxβkh(yk),
yk − xk = −βk∇f(xk) ∈ ∂Rnβk,γhh(xk) by Lemma 2.3 and Step (3.12).

Remark 3.5. (i) If in addition to the assumptions in Proposition 3.5 we
assume that one of the following condition holds

(a1) F is convex;

(a2) F is strongly quasiconvex with modulus γF > 0;

then xk is an optimal solution of (1.1) (see [26, Theorem 10] for (a2)).

(ii) Condition (3.19) becomes necessary for the optimality of F = f + h when
βk = 1/L. Furthermore, for α ≥ β > 0 and ξ ∈ Rn, we have

−αξ ∈ ∂R
n

α,γh
h(x) =⇒ − βξ ∈ ∂R

n

β,γh
h(x).

Our second main result, which shows that every cluster point of the sequence
{xk}k, generated by Algorithm 1, is a s-critical point of problem (1.1), is given
below under a continuity assumption on h.

cluster:point1 Theorem 3.2. Let h, f : Rn → R be two real-valued functions such that as-
sumptions (Ai) with i = 1, 2, 3 hold and {βk}k be a sequence of positive numbers.
If h is continuous and

0 < lim
k→+∞

βk = β′ <
1

L
, (3.20) cluster:cond

then every cluster point x̂ of the sequence {xk}k is a s-critical point of problem
(1.1), that is,

0 ∈ ∂R
n

β′,γh
h(x̂) + β′∇f(x̂). (3.21) station

Proof. Since {xk}k is bounded, it has cluster points. Let x̂ be a cluster point
of {xk}k. Then there exists a subsequence {xk`}` ⊂ {xk}k such that xk` → x̂
as `→ +∞. Combining this with Proposition 3.3(d), we obtain

lim
`→∞

xk`+1 = x̂.
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By relation (3.13) and Lemma 2.3, yk − xk+1 ∈ ∂R
n

βk,γh
h(xk+1). Then for

every y ∈ Rn and every λ ∈ [0, 1], we have

max{h(y), h(xk+1)}

≥ h(xk+1) +
λ

βk
〈yk − xk+1, y − xk+1〉+

λ

2

(
γh −

λ

βk
− λγh

)
‖y − xk+1‖2

= h(xk+1) +
λ

βk
〈xk − βk∇f(xk)− xk+1, y − xk+1〉

+
λ

2

(
γh −

λ

βk
− λγh

)
‖y − xk+1‖2. (3.22) strongine

By replacing k by k` and taking the limit when ` → +∞, we obtain from the
continuity of h and ∇f , and assumption (3.20) that

max{h(y), h(x̂)} ≥ h(x̂)+λ〈∇f(x̂), y − x̂〉+
λ

2

(
γh −

λ

β′
− λγh

)
‖y − x̂‖2,

∀ y ∈ Rn, ∀ λ ∈ [0, 1]. (3.23)

Therefore, −β′∇f(x̂) ∈ ∂Rnβ′,γh
h(x̂), and the proof is complete.

If in addition we assume (A4) instead of (A3), i.e., f is convex, we have:

cluster:point2 Proposition 3.6. Let h, f : Rn → R be two real-valued functions such that
assumptions (Ai) with i = 1, 2, 4 hold and {βk}k be a sequence of positive num-
bers such that condition (3.20) holds. Then every cluster point x̂ of the sequence
{xk}k is a 1

2β′ -quasi solution of problem (1.1), that is,

(h+ f)(x̂) ≤ (h+ f)(x) +
1

2β′
‖x̂− x‖2, ∀ x ∈ Rn. (3.24) beta:quasi:sol

Proof. Since (A4)⇒ (A3), it follows from Proposition 3.3(b) that the sequence
{xk}k is bounded, it has cluster points. Let x̂ ∈ Rn be a cluster point, then
there exists a subsequence {xk`}` such that xk` → x̂ as `→ +∞.

Now, by step (3.13), we have for every k that

h(xk+1) +
1

2βk
‖xk+1 − yk‖2 ≤ h(x) +

1

2βk
‖x− yk‖2

⇐⇒ h(xk+1) ≤ h(x)− 1

βk
〈x− xk+1, yk − x〉 − 1

2βk
‖xk+1 − x‖2.

Then, by step (3.12), we have

h(xk+1) ≤ h(x)− 1

βk
〈x− xk+1, xk − x〉+ 〈∇f(xk), x− xk+1〉 − 1

2βk
‖xk+1 − x‖2.
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By replacing k by k`, and since f and h are continuous and assumption (3.20)
holds, then by taking the limit when `→ +∞, we have

h(x̂) ≤ h(x)− 1

β′
〈x− x̂, x̂− x〉+ 〈∇f(x̂), x− x̂〉 − 1

2β′
‖x̂− x‖2

= h(x) + 〈∇f(x̂), x− x̂〉+
1

2β′
‖x̂− x‖2

≤ h(x) + f(x)− f(x̂) +
1

2β′
‖x̂− x‖2, ∀ x ∈ Rn, (by (A4)).

Therefore, relation (3.24) holds and the proof is complete.

Under the extra usual assumption that the function f+h satisfies the (PKL)
property, we can prove that the whole sequence {xk}k is convergent and that
the limit point has the previous interesting properties.

main:theo Theorem 3.3. Let h, f : Rn → R be two real-valued functions such that as-
sumptions (Ai) with i = 1, 2, 3 hold, h continuous and {βk}k be a sequence of
positive numbers. Suppose that condition (3.20) holds. If the function f + h
satisfies the (PKL) property, then the sequence {xk}k converges to a point x∗

which satisfies the following properties:

(a) x∗ is a l-critical point of problem (1.1).

(b) x∗ is a s-critical point of problem (1.1) corresponding to β′.

(c) If in addition f satisfies (A4), then x∗ is also a 1
2β′ -quasi solution of

problem (1.1), i.e., satisfies relation (3.24).

Proof. (a): Since f +h satisfies the (PKL) property and the sequence {xk}k is
bounded by Proposition 3.3, it follows from [3, Theorem 5.1] that the sequence
{xk}k is convergent to a point x∗ and that

0 ∈ ∂lim(f + h)(x∗). (3.25) cric:point

Since f is continuously differentiable, (3.25) implies 0 ∈ ∇f(x∗)+∂lim(h)(x∗),
i.e., x∗ is a l-critical point for problem (1.1).

(b)-(c): By part (a) we have xk → x∗ and by Propositions 3.2 and 3.6, every
cluster point is a s-critical point and a 1

2β′ -quasi solution for problem (1.1),
respectively, which completes the proof.

Note that in Theorem 3.3, the continuity assumption on h is needed for (b)
and (c), but it is not necessary for (a) as proved in [11] under lower semicon-
tinuity. On the other hand, the rate of convergence of the proximal gradient
method under local Lipschitz assumption together with (PKL) property was
provided in case that the desingularization function Φ has the form φ(s) = csk

for k ∈ ]0, 1] in [20, Theorem 4.6].

In virtue of Theorem 3.3 and Proposition 3.3, we have the following com-
plexity analysis.
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comp:anal Proposition 3.7. Let h, f : Rn → R be two real-valued functions such that
assumptions (Ai) with i = 1, 2, 3 hold and suppose that 0 < βk ≤ 1

L for all k.
Then for every ε > 0, we need at most

N ≥ 2

εL
((h+ f)(x1)− min

x∈Rn
(h+ f)(x)), (3.26) comp:rate

iterations to satisfy the stopping criteria ‖xk+1 − xk‖2 < ε.

Proof. By relation (3.14), we have:

1

2βk
‖xk+1 − xk‖2 ≤ (h+ f)(xk)− (h+ f)(xk+1), ∀ k ∈ N.

By telescoping this over the first N iterations and since 0 < βk ≤ 1
L , we have

N∑
k=1

‖xk+1 − xk‖2 ≤ 2

L

N∑
k=1

(
(h+ f)(xk)− (h+ f)(xk+1)

)
=

2

L
(h+ f)(x1)− (h+ f)(xN+1)

≤ 2

L

(
(h+ f)(x1)− min

x∈Rn
(h+ f)(x)

)
.

Hence,

N

(
min

1≤i≤N
‖xk+1 − xk‖2

)
≤ 2

L

(
(h+ f)(x1)− min

x∈Rn
(h+ f)(x)

)
,

and the result follows.

We finish this section with the following examples of strongly quasiconvex
functions (which are not convex) that satisfy the (PKL) property.

Example 3.1. Let us consider the function h : Rn → R given by h(x) =
√
‖x‖,

which is strongly quasiconvex on B(0, r), r > 0, with modulus γ = 1

5
1
4 2

5
4 r

1
2

by

Remark 2.1(i) and its minimum point is x = 0. Hence, it follows from relation
(2.8) with x = 0 that

h(y) ≥ h(0) +
1

85
1
4 2

5
4 r

1
2

‖y‖2, ∀ y ∈ B(0, r). (3.27)

Following [4, Subsection 4.2.2], we claim that h satisfies the (PKL) property

with φ(s) = 4r
3
4 s

1
2 on B(0, r) for all r > 0.

Clearly, φ satisfies conditions (K1), (K2) and (K3) in Definition 2.1. Now,
let us prove that relation (2.23) holds. Indeed, since h is differentiable on
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B(0, r)\{0}, relation (2.23) for x = 0 becomes

φ′(h(x)− 0) dist(0,∇h(x)) = 4r
3
4

1

2

(
1√
‖x‖

) 1
2 ∥∥∥∥0− 1

2

1

‖x‖ 3
2

x

∥∥∥∥
= (

r

‖x‖
)

3
4

≥ 1,

i.e., h satisfies the (PKL) property.

Another interesting case of strongly quasiconvex functions which satisfies
the (PKL) property is given below.

Example 3.2. Let A,B ∈ Rn×n, a, b ∈ Rn, α, β ∈ R. Let us consider the
functions f(x) = 1

2 〈Ax, x〉+ 〈a, x〉+ α and g(x) = 〈b, x〉+ β. Take 0 < m < M
and K = {x ∈ Rn : m ≤ 〈b, x〉+ β ≤M}. We consider the function:

h(x) =

{ 1
2 〈Ax,x〉+〈a,x〉+α

〈b,x〉+β , if x ∈ K,
+∞, otherwise.

(3.28)

If A is definite positive, then h is strongly quasiconvex on K with modulus

γ = λmin(A)
M > 0 by Remark 2.1(iii).

This function is semi-algebraic since its graph is a semi-algebraic subset of
Rn+1. Indeed,

{(x, t) ∈ Rn+1 : h(x) = t}
= {(x, t) ∈ Rn+1 : f(x) = tg(x)} ∩ {(x, t) ∈ Rn+1 : x ∈ K}

Therefore, by [9, Theorem 3], the function h satisfies the (PKL) property at
any point of domh.

Fractional functions have been deeply studied in continuous optimization due
to its interesting applications in economics, finance and management among
others (see [12, 36, 37, 38] and references therein).

4 Applications and Numerical Experiments
sec:4

In this section, we apply our theoretical results in the nonconvex nonsmooth
optimization problems described below.

4.1 DC Programming
subsec:4-1

Let us recall the DC optimization problem:

min
x∈Rn

(hc(x)− fc(x)), (4.1) dc:problem1
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where hc, fc : Rn → R are convex functions and fc is differentiable with Lc-
Lipschitz continuous gradient.

As stated in Remark 3.1, for any ρ > 0, problem (4.1) can be equivalently
written with strongly convex functions, that is,

min
x∈Rn

{h1(x)− f1(x)}, (4.2) sdc:problemequiv

where h1(x) = hc(x) + ρ
2‖x‖

2 and f1(x) = fc(x) + ρ
2‖x‖

2 are strongly convex
functions with modulus ρ > 0.

The following DC algorithm was considered in [39], and then improved in
[1, 2] (Boosted DC Algorithm) for constrained DC programming can be applied
for solving (4.2) as follows: Given x0 ∈ Rn, we compute

xk+1 = argminx∈Rn{h1(x)− 〈∇f1(xk), x〉}, ∀ k ≥ 0. (4.3) alg:LDM

We can also transform problem (4.1) to

min
x∈Rn

{h(x) + f(x)}, (4.4) sdc:problemequiv1

where h(x) = hc(x) + α
2 ‖x‖

2 and f(x) = −fc(x)− α
2 ‖x‖

2 for any α > 0.
In the following, we show that Algorithm (4.3) can be considered as a par-

ticular case of our Algorithm 1 for solving (4.4). Indeed, let us assume that
0 < α < ρ. Then the update rule (4.3)) is equivalent with

xk+1 = argminx∈Rn{hc(x) +
ρ

2
‖x‖2 − 〈∇fc(xk) + ρxk, x〉}

= argminx∈Rn{h(x) +
ρ− α

2
‖x‖2 + 〈∇f(xk)− (ρ− α)xk, x〉}

= argminx∈Rn

{
h(x) +

ρ− α
2

∥∥∥∥x− (xk − 1

ρ− α
∇f(xk))

∥∥∥∥2
}
. (4.5) updateruledc

Clearly, (4.5) is the update rule of Algorithm 1 for solving (4.4) with βk = 1
ρ−α

for all k.
Therefore, the following result provides sufficient conditions for the conver-

gence of the generated sequence (4.5) to a l-critical and s-critical point.

main:theo2 Theorem 4.1. Let hc and fc be two convex functions where hc is continuous
and fc is continuously differentiable. Let us suppose the following:

(B1) fc has Lfc-Lipschitz continuous gradient with Lfc > 0.

(B2) The function −fc is 2-weakly coercive.

(B3) The function hc − fc satisfies the (PKL) property.

Then by taking ρ > Lfc and 0 < α <
ρ−Lfc

2 , we obtain that the sequence {xk}k,
generated by the update rule (4.5), satisfies the following:
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(a) If xk+1 = xk, then stop, xk is a s-critical point corresponding to 1
ρ−α for

problem (4.4).

(b) The sequence {xk}k converges to a point x∗ which is l-critical and s-critical
for problem (4.4).

Proof. Since fc has a Lfc -Lipschitz continuous gradient with Lfc > 0, we choose

ρ > Lfc and 0 < α <
ρ−Lfc

2 .
Let us define h(x) = hc(x) + α

2 ‖x‖
2 and f(x) = −fc(x) − α

2 ‖x‖
2. Since

hc is convex and α > 0, h is strongly convex with modulus α > 0, i.e., it
is strongly quasiconvex with the same modulus. Furthermore, since fc has a
Lfc-Lipschitz continuous gradient, then f has a (Lfc + α)-Lipschitz continuous
gradient. Furthermore, since −fc is 2-weakly coercive, hc−fc is 2-supercoercive
by Proposition 3.1, thus h+ f = hc − fc is 2-supercoercive too.

Then, h is strongly quasiconvex with modulus ρ > 0, f has a (Lfc + ρ)-
Lipschitz continuous gradient, h + f is coercive, h + f = hc − fc satisfies the
(PKL) property by assumption (P3) and

1

ρ− α
≤ 1

Lfc + α
,

i.e., the sequence βk ≡ 1
ρ−α satisfies condition (3.20), thus part (a) follows from

Proposition 3.5(a) while (b) follows from Theorem 3.3.

4.2 Numerical Experiments
subsec:4-3

In the following examples, we construct the function h as the maximum of a
finite number of strongly convex and strongly quasiconvex functions in virtue of
Remark 2.1, i.e., the resulting function is strongly quasiconvex and nonsmooth.

The algorithm was implemented and executed in Python on a ASUS Laptop
with Windows 11 and an AMD Ryzen 7 5800H CPU with 16GB RAM. In
the following numerical experiments, there is no closed form or any available
solver for finding the global solution of the proximal operator of a nonconvex
function h. The proximal step was computed by using function minimize of the
SciPy.optimize package.

ex1 Example 4.1. ([15]) Let q ∈ N and h1, h2 : Rn → R given by h1(x) =
√
‖x‖

and h2(x) = ‖x‖2−q. Both h1 and h2 are continuous functions. It is known that
h2 is strongly convex, hence also strongly quasiconvex, while according to Re-
mark 2.1 the function h1 is strongly quasiconvex on any convex and bounded set
K ⊆ Rn. Then the function h : Rn → R defined by h(x) := max{h1(x), h2(x)}
is continuous and strongly quasiconvex (as the maximum of two strongly quasi-
convex functions) without being convex and nonsmooth.

Then we consider problem (1.1) with

h(x) := max{h1(x), h2(x)} and f(x) = ‖x− b‖2,
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where b is a given vector in Rn. Clearly, f is a convex and differentiable function
with Lipschitz continuous gradient, i.e., assumptions (Ai) with i = 1, 2, 3 hold.

In the first experiment, we test the proximal gradient algorithm for this
problem with p = 1, n = 5 and b = (0, 0, 0, 0, 0)T with starting point x0 =
(1, 1, 1, 1, 1)T and stopping criteria ‖xk − xk+1‖ < 10−5 or the number of iter-
ations exceeds 1000. Under these assumptions, the unique solution of (1.1) is
x∗ = (0, 0, 0, 0, 0)T and the optimal value is 0. Table 1 reports the CPU time(s)
and the error

err =
‖xk − x∗‖

n
,

with different choices of βk.

Table 1: CPU time(s) and Error of the Proximal Gradient Algorithm in the
first experiment with different choices of βk in Example 4.1

βk ≡ 1
5

βk ≡ 1
3

βk ≡ 1
2

CPU time(s) 0.03750324249267578 0.1652665138244629 0.018276453018188477
Error 1.0064413352965294e-06 8.680309102298729e-06 0

tab1

In the second experiment, the proximal gradient algorithm was tested for
this problem with p = 1, n = 10 and b = 110 with starting point x0 = 010 and
stopping criteria ‖xk − xk+1‖ < 10−5 or the number of iterations exceeds 1000.
Under these assumptions, the unique solution of (1.1) is x∗ = 1

2 × 110 and the
optimal value is 4. Table 1 reports the CPU time(s) and the error

err =
‖xk − x∗‖

n
,

with different choices of βk.

Table 2: CPU time(s) and Error of the Proximal Gradient Algorithm in the
second experiment with different choices of βk in Example 4.1

βk ≡ 1
5

βk ≡ 1
3

βk ≡ 1
2

CPU time(s) 0.08352446556091309 0.05029726028442383 0.004403352737426758
Error 8.213949607813013e-06 5.827785724233184e-06 2.216049577025723e-07

tab2

We emphasize that in the next example, we compute a family of 100 hundred
problems randomly generated for each dimension n = 20, 50 and 100.

ex2 Example 4.2. Let us consider problem (1.1) when the function h is the maxi-
mum of a finite number of quadratic fractional functions:

h(x) = max
j∈J

{ 1
2 〈Ajx, x〉+ 〈aj , x〉+ αj

〈bj , x〉+ βj

}
, (4.6) eq:const

with Aj ∈ Rn×n symmetric and definite positive, aj , bj ∈ Rn and αj , βj ∈ R for
all j ∈ J and 2 ≤ |J | < +∞. Take fixed M > m > 0. We choose the feasible
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set K such that for any x ∈ K, we have

m ≤ 〈bj , x〉+ βj ≤M, ∀ j ∈ {1, . . . , T},

and K is convex and compact.
By Remark 2.1(ii), h is the maximum of |T | < +∞ strongly quasiconvex

functions, thus is strongly quasiconvex by Remark 2.1(iii) with modulus γi =
minj∈J{λmin(A

i
j)}

M > 0 and it is not necessarily differentiable because |J | ≥ 2.
In the following experiment, let us take f(x) = ‖Ax − b‖2, K = [0, 5]n,

|J | = 2 and

A1 = 2× In, a1 = −1n, α1 = n+ 1, b1 = 1n, β1 = 1,

A2 = 0n×n, a2 = 1n, α2 = −n+ 1, b2 = 0n, β2 = 1.

In virtue of Lemma 2.2, we can estimate the strong subdifferential by using the
convex subdifferential, and using the structure of the problem, we have:

h(x) = max

{
‖x‖2 − 1Tnx+ n+ 1

1Tnx+ 1
, 1Tnx− n+ 1

}
.

Clearly, h(x) ≥ 1 for every x ∈ [0, 5]n and h(1n) = 1. Every entry of A was
independently generated using a standard normal distribution in the interval
[0, 1] and b was chosen as b = A × 1n. Under these assumptions, the unique
solution of (1.1) is x∗ = 1n and the optimal value is 1. In this setting, x∗ ∈
argminKh∩argminKf , therefore, it follows from Corollary 3.2 that the sequence
generated by the proximal gradient method converges to x∗.

Table 3 reports the average CPU time(s) and the average error

err :=
‖xk − x∗‖

n
,

over 100 problems for each dimension n = 20, 50, 100 with βk ≡ 1
2λmax(ATA)

,

x0 = 0n and we stop the algorithm if ‖xk − xk+1‖ < 10−3 or the number of
iterations exceeds 1000.

Table 3: Average CPU time and error for different values of n in Example 4.2
n 20 50 100

CPU time(s) 0.4206161332130433 1.0433911538124083 4.349398927688599
Error 0.01346800752509246 0.007167582429400066 0.004199154120685113

tab3

5 Conclusions
sec:06

We contributed to the discussion on the minimization of the sum of nonconvex
functions by providing both optimality conditions and proximal gradient algo-
rithms when one of the involved functions is nonsmooth and nonconvex and the
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other is differentiable (and possibly nonconvex too). In particular, we assume
that the nonsmooth nonconvex function is strongly quasiconvex (in the sense
of Polyak [35]) and, by using adequate tools for this class, we established new
information regarding the point provided by the stopping criteria as well as
for the limit point of the sequence generated by the algorithm. Furthermore,
we provided applications in nonconvex optimization as DC programming and
quadratic fractional programming problems as well as numerical illustrations.

We hope that this new information will be very useful for the optimiza-
tion community for dealing with the composite optimization problem involving
nonconvex functions and its applications. In particular, by developing accele-
rations/flexibilizations/generalization of the proximal gradient method with its
inertial, relaxed and adaptive versions as well as with Bregman distances (see
[10, 31] and also [15, 27] for the minimization of strongly quasiconvex functions).
This will be the subject for a subsequent work.
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